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Outline 

1. Why negative tone cross-linking molecular resists?  

2. General performance/capabilities 

3. Controlling cross-linking in these systems 

4. EUVL results 

5. Future work 

 

 

2 



School of Chemical & Biomolecular Engineering Georgia Institute of Technology 

Fundamental Problems for High Resolution Resists 

-Utilization of molecules and imaging 

schemes that possess a small “pixel” size 

 

-Ability to resist pattern collapse 

 

 

-Ability to tailor amplification level and 

build in amplification to improve LER and 

resolution 

 

-A design that can prevent resist 

inhomogeneity 

Molecular resist platforms 

 

 

Cross-linked organic 

materials as final features 

 

 

Utilization of photo-

responsive quenchers 

 

 

 

Small molecule resists 



School of Chemical & Biomolecular Engineering Georgia Institute of Technology 

4 

• Molecular glasses are low molecular-weight organic compounds that 

readily form stable amorphous glasses  

 

 

 

 

Molecular Resists 

• Introduced to improve resolution 

but had other issues for positive 

tone 

 

• Use for negative tone cross-linked 

resists appears much more 

favorable 

 

• Good properties include: 

monodisperse & synthetic control 
Da Yang, et. al., J. Materials Chemistry 2006

5~10 nm5~10 nm 

PHOST 

(50 repeat 

units) 

TPS-Nonaflate 

Molecular Resist 

Da Yang, et. al., J. Materials Chemistry 2006 
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5 Neg. Tone MR with Cationic Cross-linking 
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• There are mechanistic changes in the patterning that affect performance 

• Photoacid is no longer the most important reaction species – active 

cation instead – the cross-linking must be controlled, not the acid 

 

Negative Tone 

Polymerization Cycle 
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6 Neg. Tone MR with Cationic Polymerization 

Potential advantages of cationic polymerization MRs  

– superior mechanical strength 

cross-linking increases modulus, improves pattern collapse 

– intrinsic diffusion control  

active cation is covalently attached to end of growing chain/network 

diffusivity decreases with extent of conversion 

– low outgassing of resist 

no mass loss during reaction vs. deprotection schemes 

– reduced swelling vs. polymers 

higher cross-link density in MR reduces swelling 



School of Chemical & Biomolecular Engineering Georgia Institute of Technology 

7 Improved Mechanical Properties of Cross-linked 

Resists 
• Using thin film bucking method, we can measure the modulus for ultra-thin 

films (SPIE 76391I, 2010) 

• Cross-linked MR show higher modulus than positive tone polymeric resists 

both in bulk and ultra-thin films 

• This leads to improved pattern collapse performance in negative tone resists 

due to higher critical stress before collapse (JVST B 28, C6S6, 2010) 
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8 Polymer vs. Molecular Resists – 100 keV E-beam 

• Polymer shows inferior resolution and LER 

• Differences likely due to cross-link (XL) density – MR require higher 

extent of XL to reach full network = better mechanical properties 

55 nm 1:2 

Polymer - SU-8 

50 nm 1:2 20 nm 1:2 

 

200 nm 

25 nm 1:1 

200 nm 

20 nm 1:1 

200 nm 

35 nm 1:1 
110°C PEB 

200 nm 

30 nm 1:1 (a) (b) (c) (d) 
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9 Negative Tone Baseline 
• Multiple MR available, but 4-Ep (below) is baseline material for all EUV 

• PAG: TPS-SbF6 5 mol%,  Developed in MIBK (organic solvent) 

• Lower contrast reduces performance in EUV compared to e-beam 
O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

OO 35 nm 1:1   

60 nm

35 nm 1:1   

60 nm

E-beam 100 keV EUV 

0

0.2

0.4

0.6

0.8

1

0 5 10
Dose (mJ/cm

2
)

N
R

T

DUV

EUV

Esize = 40 μC/cm2 

CD = 35 nm 

LER = 2.3 nm 

Esize ~ 8 mJ/cm2 

CD = 32 nm 

LER = 4.9 nm 

4-Ep 

EUV at Paul Scherrer 

Institute 

E-beam at Georgia 

Tech on JEOL JBX-

9300FS 100 keV 

200 nm 



School of Chemical & Biomolecular Engineering Georgia Institute of Technology 

Controlling Cationic Cross-Linking 10 

• Conventional CARs use base to 

improve resolution by acid quenching 

 

• Base quencher ineffective in these 

systems because acid not active 

species (trioctylamine in 4Ep on left – 

even equimolar base:PAG ineffective) 

 

 

acid/base 

neutralization cross-linking cycle 
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Controlling Cationic Cross-Linking 11 
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cross-linking cycle 

termination reaction 

• Cross-linking cycle must be controlled by 

chain termination or reducing rate of 

cross-linking reaction 

• Triflate anion can nucleophilically attack 

growing chain to act as chain termination 

agent and modifies rate of cross-linking 

• Addition of ammonium triflate has strong 

effect on cross-linking (left plot), but we 

can do even better than this 

 

 

DUV, 60 °C 
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Additive to Control Cationic Cross-Linking 12 

• Addition of TPS-Tf shows chain termination when 

unexposed, but chain transfer when exposed 

(photoacid is regenerated) 

• By adding TPS-Tf on top of a constant amount of 

TPS-SbF6 (PAG at 5 mol%), we see immediate 

effects on contrast (left plot) 

• This causes a shift in the contrast curve to higher 

dose, but improved performance in terms of LER 

and resolution 

  

       0 additive         0.5:1 add.:PAG 

DUV, 90 °C 

unexposed 

exposed 
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13 
Additive Enhances Performance 

• Significant improvement in resolution and LER – 15 mJ/cm2 

• Resist Formulation:  0.5:1 TPS-Tf:TPS-SbF6 

• LER (3σ) = 4.0 nm for 50 nm lines, 4.5 nm for 25 nm lines 

• 22 nm lines resolve, limited by pattern collapse 

 

50 nm 30 nm 25 nm 22 nm 

Best w/o additive 

EUV at 

Paul 

Scherrer 

Institute 
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Testing Performance on MET Tool 
14 

41.0 mJ/cm2 35.8 mJ/cm2 31.3 mJ/cm2 27.3 mJ/cm2 

• New studies carried out on MET tool at Berkeley using dipole 

illumination with standard dark field mask  

• First test was slightly overdosed – minimum dose was 27.3 mJ/cm2 for 

30 nm 1:1 lines shown above  



School of Chemical & Biomolecular Engineering Georgia Institute of Technology 

1:1 and 1:2 L:S Patterns 

• 30 nm and 22 nm L:S patterns resolve, but overdosed 

15 

30 nm 22 nm 

27.3 mJ/cm2, Focus = + 50 nm  

100 nm 100 nm 

1:2 L:S 1:1 L:S 1:1 L:S 
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100 nm 

Dense 1:1 Line/Space Features  

• 26 nm patterns on MET look good, but overdosed, a few bridges 

• 22 nm and 20 nm dense features resolve, but much more bridging 

defects and some line bending 

16 

26 nm 22 nm 20 nm 

EUV at 

LBNL MET 

100 nm 100 nm 
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1:1 L:S Elbow Features 

• 30 nm dense elbow features look good, but slightly overdosed 

• 20 nm elbow features resolve, but some pattern collapse/bridging 

defects observed 

17 

30 nm 20 nm 

200 nm 100 nm 

EUV at 

LBNL MET 
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Dense Circle Features 

• 30 and 22 nm circle features look 

good with minimal bridging 

• 20 nm circle features have more 

bridging defects, but appear to 

adequately resolve 

18 

30 nm 22 nm 

20 nm 
EUV at 

LBNL MET 

200 nm 100 nm 

100 nm 
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19 19 

25 nm 1:1 20 nm 1:2 
15 nm 1:3 20 nm 1:2 

• Initial studies on these materials 

suggest they potentially can obtain 

sub-20 nm resolution 

• Un-optimized 2-CHEp appears to 

have at least 15 nm intrinsic resolution 

(resolution limited by x-link reaction) 

• The highest resolution materials (2-Ep 

and 2-CHEp) have not yet been 

investigated with additive or studied at 

EUV 

2-Ep, 100 keV E-beam 

 2-CHEp, 100 keV E-beam 

 

4-Ep, 1:2 

additive:PAG, 

EUV 

Pushing Toward Sub 20 nm Resolution 
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Summary 

• Negative tone molecular resists based on cross-linking 
show promise to satisfy EUV patterning requirements for 
22 nm and below 

• Potential benefits include: superior mechanical strength, 

intrinsic diffusion control, low outgassing of resist, and 

reduced swelling vs. polymers 

• Controlling of cross-linking/polymerization by addition of 
novel control additives is key enabler for improving 
resolution and LER 

• Standard illumination conditions on MET shows 
capability for 20 nm resolution with dose-to-size less 
than 25 mJ/cm2. 

• Plenty of room for optimization still exists in already high 
performing systems 

20 
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Questions 

21 
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Additional Slides 
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23 23 Base Developable Designs – TPOE-3Ep 

• Partial functionalization allows aqueous base developed systems 

• Unique opportunity for direct comparison of solvent vs. base development 

• Shows better contrast than 4-Ep, E0 shifted away from 0 mJ/cm2, 

• No measurable swelling from interferometry studies in solvent or base 

 

DUV Contrast Curves 

PEB 90°C for 1 min Only 1 OH required for solubility 
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24 24 
TPOE-3Ep 100 keV E-beam Patterns 

• MIBK resolution comparable to 4-Ep 

• MIBK and TMAH have equivalent LER 

• Sensitivity and LER are very similar between 

organic solvent and aqueous base develop, 

but resolution is slightly better in solvent 

TMAH 100 nm, LER = 5.9 MIBK 35 nm 1:2, LER = 5.9 

TMAH 60 nm 1:1  

200 nm 

200 nm 90 nm 

E-beam at Georgia 

Tech on JEOL JBX-

9300FS 100 keV 


